Convolutional Neural Network Notes
Notes:
1. Dimensions:
- Input layer: $(W \times H \times D)$
- $K$ filters $(F \times F \times D)$
- Stride $S$ and padding $P$
$\rightarrow$ Width & height of the output layer:
$\rightarrow$ Shape of output layer:
$\rightarrow$ Number of parameters:
2. Pooling
Benefits of pooling:
- Reduce the size of the input
- Prevent overfitting
Max pooling:
- Allow the neural network to focus on only the most important elements