Notes:

1. Dimensions:

  • Input layer: $(W \times H \times D)$
  • $K$ filters $(F \times F \times D)$
  • Stride $S$ and padding $P$

$\rightarrow$ Width & height of the output layer:

$\rightarrow$ Shape of output layer:

$\rightarrow$ Number of parameters:

2. Pooling

Benefits of pooling:

  • Reduce the size of the input
  • Prevent overfitting

Max pooling:

  • Allow the neural network to focus on only the most important elements